27 research outputs found

    A Posteriori error control & adaptivity for Crank-Nicolson finite element approximations for the linear Schrodinger equation

    Get PDF
    We derive optimal order a posteriori error estimates for fully discrete approximations of linear Schr\"odinger-type equations, in the L(L2)L^\infty(L^2)-norm. For the discretization in time we use the Crank-Nicolson method, while for the space discretization we use finite element spaces that are allowed to change in time. The derivation of the estimators is based on a novel elliptic reconstruction that leads to estimates which reflect the physical properties of Schr\"odinger equations. The final estimates are obtained using energy techniques and residual-type estimators. Various numerical experiments for the one-dimensional linear Schr\"odinger equation in the semiclassical regime, verify and complement our theoretical results. The numerical implementations are performed with both uniform partitions and adaptivity in time and space. For adaptivity, we further develop and analyze an existing time-space adaptive algorithm to the cases of Schr\"odinger equations. The adaptive algorithm reduces the computational cost substantially and provides efficient error control for the solution and the observables of the problem, especially for small values of the Planck constant

    On a selection principle for multivalued semiclassical flows

    Get PDF
    We study the semiclassical behaviour of solutions of a Schr ̈odinger equation with a scalar po- tential displaying a conical singularity. When a pure state interacts strongly with the singularity of the flow, there are several possible classical evolutions, and it is not known whether the semiclassical limit cor- responds to one of them. Based on recent results, we propose that one of the classical evolutions captures the semiclassical dynamics; moreover, we propose a selection principle for the straightforward calculation of the regularized semiclassical asymptotics. We proceed to investigate numerically the validity of the proposed scheme, by employing a solver based on a posteriori error control for the Schr ̈odinger equation. Thus, for the problems we study, we generate rigorous upper bounds for the error in our asymptotic approximation. For 1-dimensional problems without interference, we obtain compelling agreement between the regularized asymptotics and the full solution. In problems with interference, there is a quantum effect that seems to survive in the classical limit. We discuss the scope of applicability of the proposed regularization approach, and formulate a precise conjecture

    Pointwise a posteriori error bounds for blow-up in the semilinear heat equation

    Get PDF

    Analysis for time discrete approximations of blow-up solutions of semilinear parabolic equations

    Get PDF
    We prove a posteriori error estimates for time discrete approximations, for semilinear parabolic equations with solutions that might blow up in finite time. In particular we consider the backward Euler and the Crank–Nicolson methods. The main tools that are used in the analysis are the reconstruction technique and energy methods combined with appropriate fixed point arguments. The final estimates we derive are conditional and lead to error control near the blow up time

    Regularized semiclassical limits:linear flows with infinite Lyapunov exponents

    Get PDF
    Semiclassical asymptotics for linear Schr\"odinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P. L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as x-|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for x-|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM

    Impaired Insulin Profiles Following a Single Night of Sleep Restriction: The Impact of Acute Sprint Interval Exercise

    Get PDF
    Experimental sleep restriction (SR) has demonstrated reduced insulin sensitivity in healthy individuals. Exercise is well-known to be beneficial for metabolic health. A single bout of exercise has the capacity to increase insulin sensitivity for up to 2 days. Therefore, the current study aimed to determine if sprint interval exercise could attenuate the impairment in insulin sensitivity after one night of SR in healthy males. Nineteen males were recruited for this randomized crossover study which consisted of four conditions—control, SR, control plus exercise, and sleep restriction plus exercise. Time in bed was 8 hr (2300–0700) in the control conditions and 4 hr (0300–0700) in the SR conditions. Conditions were separated by a 1-week entraining period. Participants slept at home, and compliance was assessed using wrist actigraphy. Following the night of experimental sleep, participants either conducted sprint interval exercise or rested for the equivalent duration. An oral glucose tolerance test was then conducted. Blood samples were obtained at regular intervals for measurement of glucose and insulin. Insulin concentrations were higher in SR than control (p = .022). Late-phase insulin area under the curve was significantly lower in sleep restriction plus exercise than SR (862 ± 589 and 1,267 ± 558; p = .004). Glucose area under the curve was not different between conditions (p = .207). These findings suggest that exercise improves the late postprandial response following a single night of SR

    A novel, structure-preserving, second-order-in-time relaxation scheme for Schrödinger-Poisson systems

    Get PDF
    We introduce a new second order in time relaxation-type scheme for approximating solutions of the Schr\"odinger-Poisson system. More specifically, we use the Crank-Nicolson scheme as a time stepping mechanism, whilst the nonlinearity is handled by means of a relaxation approach in the spirit of \cite{Besse, KK} for the nonlinear Schr\"odinger equation. For the spatial discretisation we use the standard conforming finite element scheme. The resulting scheme is explicit with respect to the nonlinearity, satisfies discrete versions of the system's conservation laws, and is seen to be second order in time. We conclude by presenting some numerical experiments, including an example from cosmology, that demonstrate the effectiveness and robustness of the new scheme.Comment: 17pages, 10 figure
    corecore